.
INIVERSITY OF WATERLOO
OF ENGINEER

ECE 150 Fundamentalsof Programming

Cascading conditional statements

+ Consider the following cascading conditional statement:
if (error_code == 0) {
// Deal with Error Code @
} else if (error_code == 1) {
// Deal with Error Code 1
} else if (error_code == 12) {
// Deal with Error Code 12
} else if (error_code == 13) {
// Deal with Error Code 13
} else if (error_code == 42) {
// Deal with Error Code 42
} else {
// Deal with all other error codes

}

2020-11-27

Outline

* In this lesson, we will:
— Describe deeper cascading conditional statements
— Explain how the switch statement can be used
— Give some examples of its use

i S

Vowels versus consonants

» Another for dealing with letters
if ((ch == 'a') || (ch =
[l (ch =
// React to a vowel
} else if (ch == "'y') {
// React to the special case of the letter 'y'
} else {
// Deal with all consonants

='i')
)

S

) A

}

i S

Hexadecimal to decimal

» Here we convert a hexadecimal character to a decimal equivalent
if ((hex >= '@') & (hex <= '9")) {

return hex - '0';

} else if ((hex >= 'a') && (hex <= "f')) {
return hex - 'a' + 10;

} else if ((hex >= 'A') && (hex <= "F')) {
return hex - 'A' + 10;

} else {

// Deal with an invalid hexadecimal digit

e

The switch statement

» Inall of these cases, a single variable was being compared with
either individual constants or a small range of constants
+ Such sequential testing requires significant amounts of time,
especially for the last test to be performed

* C++ includes a short-cut mechanism using either a mathematical
formula formulated at compile time, or a look-up table or a binary
search thereof, or a combination of these together with perhaps
simpler conditional statements

— This s called a switch statement
— The name is likely derived from older mechanical switching devices
that could make connections directly based on a value

2020-11-27

i S

Parsing an arithmetic expression

» This could be used parsing an arithmetic expression
if ((ch >= '0") && (hex <= '9")) {
// Deal with a number
} else if (hex == "(') {
// Deal with an opening parenthesis
else if (hex == ")"') {
// Deal with a closing parenthesis
else if ((char == '+') || (hex == '-')) {
// Deal with possibly unary or binary + or -
else if ((char == '*') || (hex == '/') || (hex == '%')) {
// Deal with binary *, / or %
else {
// Deal with anything else including identifiers

-

-

-

-

// - And for the keeners, yes, we assumed
// that * was multiplication and not a pointer dereference

e Sl

int error_code{};

// Use 'error_code’ Example
switch (error_code) {
case 0:
// Deal with Error Code @
break; if (error_code == 0) {
case 1: // Deal with Error Code @
. } else if (error_code == 1) {
// beal with Error Code 1 // Deal with Error Code 1
break; } else if (error_code == 12) {
case 12: // Deal with Error Code 12
// Deal with Error Code 12 } else if (error_code == 13) {
. // Deal with Error Code 13
break; } else if (error_code == 42) {
case 13: // Deal with Error Code 42
// Deal with Error Code 13 } else {
// Deal with all other error codes
break; }
case 42:
// Deal with Error Code 42
break;
default:

// Deal with all other error codes

}
// The break jumps to the end of the statement

2020-11-27

Example Example

switch (ch) {

char chi}; e I||| 25: t;) { case '@': case '1': H (ré:iﬁnﬁexe-)'g‘?;(hex DR
// Do something with 'ch’ // React to a vowel case '2': case '3': } else if ((hex >= 'a') && (hex <= 'f')) {
} else if (ch =="'y') { N ¢ the letter 'y: case '4': case '5': lrety;n he; 3 :"leeé& hex <= 'F')) {
switch (?hl) {) 9122 Dzeact to the special case o e letter 'y case '6': case '7': } el i:tirn(hixe)-(e :)le; (hex
case "a': // Deal with all consonants case '8': case '9' } else {
case 'e': } return ch - '0'; // Deal with an invalid hexadecimal digit
case 'i': case 'a' case 'b': ¥
case 'o': case 'c': case 'd':
case 'u': case 'e': case 'f':
// React to a vowel return ch - 'a' + 10;
break; case 'A': case 'B':
case 'y': case 'C case 'D':
// React to the special case of the letter 'y' case 'E': case 'F':
break; return ch - 'A' + 10;
default: default:
// Deal with all consonants throw std::invalid_argument{ "Expecting a hexadecimal digit" };
}
// The break jumps to the end of the statement o } . I

Example char ch}; Example

// Do something... if ((ch >= '0") && (hex <= '9")) {
// Deal with a number
} else if (hex == (') {

+ Of course, sometimes an array is faster: switch (ch) { // Deal with an opening parenthesis
. . o - } else if (hex == ')") {
int_hex_to_int[55] { case '@': case '1': // Deal with a closing parenthesis
1, 2, 3, 4, 5, 6, 7, 8, 9, -1, -1, -1, -1, -1, -1, case '2': case '3': } else if ((char == '+') || (hex == '-')) {
. e, // Deal with possibly unary or binary + or -
-1 11, 12, 13, 14, 15, -1, -1, -1, -1, -1, -1, -1, -1, -1, case '4': case '5': } else if ((char - "*') || (hex = '7') || (hex == '%")
- - - - - - - - - - - - - - - - case '6" case '7":) {
i, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, . o // Deal with binary *, / or %
-1, 10, 11, 12, 13, 14, case '8': case '9': } else {
}; // Deal with a number // Deal with anything else, including identifiers
’ case '(': 3
7/ // Deal with an opening parenthesis
o case ')':
- // Deal with a closing parenthesis
[asser‘t((ch >= '0') & (ch <= 'f') && (hex_to_int[ch - '0'] != -1);] L L
case '+': case '-':

return hex_to_int[ch - '0']; // Deal with possibly unary or binary + or -

case '*': case '/': case '%':
// Deal with binary *, / or %
default:
// Deal with anything else, including identifiers

11 12

2020-11-27

Allowable types Allowable types

+ The argument must be an integer, character or Boolean type + Theidentifier must be an integer, character or Boolean type
— The type cannot be float, double, a pointer or any class switch (current.month()) {
_ It can also be an enumerated t e case JANUARY: case MARCH: case MAY:
yp case JULY: case AUGUST: case OCTOBER:
switch (wkdy) { case DECEMBER:
case MONDAY: enum Months { length = 31;
enum Weekday { // Deal with a Monday JANUARY, break;
MONDAY, break; ;EgE:ARv’ case APRIL: case JUNE:
TUESDAY, case TUESDAY: 4 case SEPTEMBER: case NOVEMBER:
WEDNESDAY, // Deal with a Tuesday APRIL, length = 30;
THURSDAY, oreak; MAY, break;
case WEDNESDAY: JUNE
FRIDAY, 17 D N 2 case FEBRUARY:
eal with a Wednesday JuLy, i
SATURDAY, break; 2 if ((current.year()%4 != @) || (
SUNDAY case THURSDAY: AUGUST, (current.year()%100 == 0) 8& (current.year()%400 = @)
} // Deal with a Thursday SEPTEMBER,) H
break; OCTOBER, length = 28;
case FRIDAV: NOVEMBER, } else {
/7 Deal with a Friday DECEMBER length = 29;
break; }; }
default: case default:
// Weekend! assert(false);
N I) I

13 14

Allowable types Most significant source of error

» Of course, sometimes an array is easier: » Novice programmers often forget to include the break statement at
// Declare an array the end of each case if they intend to for the code executed to be
unsigned int month_lengths[12]{ mutually exclusive switch (wkdy) {

31, e, 31, 3e, 31, 30, 31, 31, 3@, 31, 30, 31
1; case MONDAY:

enum Months { std::cout << "Today is the Moon's day" << std::endl;
JANUARY, case TUESDAY:
FEBRUARY, if (current.month() == FEBRARY) { std::cout << "Today is Tiw's day" << std::endl;
MARCH, length = ((current.year()%4 !=0) || (case WEDNESDAY:
APRIL, (current.year()%100 == @) & (current.year()%400 != @) std::cout << "Today is Woden's day" << std::endl;
MAY,)) ? 28 : 29; case THURSDAY:
JUNE, } else { std::cout << "Today is Thor's day" << std::endl;
JuLy, length = month_lengths[current.month()]; case FRIDAY:
AUGUST, } std::cout << "Today is Freya's day" << std::endl;
SEPTEMBER, case SATURDAY:
OCTOBER, assert(length I= 0); std::cout << "Today is Saturn's day" << std::endl;
NOVEMBER, case SUNDAY:

. DECEMBER std::cout << "Today is the Sun's day" << std::endl;
Y default:
assert(false); // Should not happen
I } L

15 16

Most underused feature

* One of the most underused features is to use the fall through to
perform two actions for some cases, but only one for others
— Suppose an escalating response is required

switch (error_code) {
case 5: case 16: case 154:
// Critical errors
// - send a report on the error
case 1: case 73: case 97:
case 54: case 253: case 255:
// Serious errors
// - alert the user
default:
// All errors
// - log the error

17

References

[1] https://en.wikipedia.org/wiki/Switch_statement

19

2020-11-27

» Following this lesson, you now
— Understand how and when a switch statement can be used
— Are aware of the potential benefits

18

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see
https://www.rbg.ca/
for more information.

20

21

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

2020-11-27

